\qquad Name: \qquad Period: \qquad Score \qquad
Based on the given graph, write the equation of $g(x)$ in the translation form of $g(x)=f(x)+k$. Then simplify the equation of $g(x)$ into slope-intercept form. The equations of $f(x)$ is given.

1. $f(x)=1 / 4 x-3$

a. translation form

$$
g(x)=
$$

b. slope-intercept form

$$
g(x)=
$$

2. $f(x)=-2 x+5$

a. translation form

$$
g(x)=
$$

b. slope-intercept form

$$
g(x)=
$$

The equation $g(x)$ is written as a linear or exponential function. Write $g(x)$ in the translation form of $g(x)=f(x)+k$ for each problem.
3. $\begin{aligned} f(x) & =7 x+13 \\ g(x) & =7 x-5\end{aligned}$
4. $f(x)=3^{x} \cdot 5$
$g(x)=7 x-5$
$g(x)=3^{x} \cdot 5-4$
$g(x)=$
Translation Form \qquad
$g(x)=\frac{}{\text { Translation Form }}$
5. Looking at the functions $f(x)$ and $g(x)$ for problem \#3, how would $f(x)$ and $g(x)$ compare if they were both graphed on the same coordinate grid?

You have been given the equations of $f(x)$ and the transformation $g(x)=f(x)+\boldsymbol{k}$. Graph both $f(x)$ and $g(x)$ on the grid provided. Then write the explicit equation for $g(x)$ in the space provided.
6. $\quad f(x)=2 x-4 ; \quad g(x)=f(x)+3$

$$
g(x)=
$$

\qquad
7. $\quad f(x)=2^{x} \cdot 3 ; \quad g(x)=f(x)-1$

$$
g(x)=
$$

\qquad

Review: Pythagorean Theorem

Find the length of the missing side using the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$ -adapted from mathaids.com

8) \qquad

9) \qquad

10) \qquad
18

11)

